# AERODYNE RESEARCH, Inc.



# ToF-CIMS

## **Chemical Ionization Time-of-Flight Mass Spectrometer**

Real-time chemical analysis of trace gases, aerosols, or atmospheric ions.



### APPLICATIONS

- Continuous air monitoring.
- Laboratory, field, or mobile platform based experiments.
- Climate change and air quality research.
- Human breath analysis.
- Chemical ionization source hardware com patible with wide range of ion chemistry, in cluding: CH<sub>3</sub>COO<sup>-</sup>, I<sup>-</sup>, SF<sub>6</sub><sup>-</sup>, CF<sub>3</sub>O<sup>-</sup>, (CH<sub>3</sub>OH)H<sup>+</sup>, (H<sub>2</sub>0)<sub>n</sub>H<sup>+</sup>, O2<sup>+/-</sup>, and NO<sup>+</sup>.
- Chemical ionization source easily inter changed with atmospheric ion (AI) sampling inlet and nitrate ion source.



### ADVANTAGES

- Quantitative response with broad dynamic range. Part per trillion (pptv) gas-phase sensitivity.
- Optional FIGAERO sampler enables simultaneous measurements of gas and particle composition.
- Soft ionization combined with high mass resolving power enables molecular and elemental speciation.
- High ion duty cycle: simultaneous measurement of all mass-to-charge ratios.
- Data acquisition rates exceeding 200 complete mass spectra per second.
- · Low power, field portable assembly.
- Choice of two TOFMS platforms. Compact, high sensitivity (CTOF) or high mass resolving power (HTOF).

## AERODYNE RESEARCH, Inc.



### **ToF-CIMS**

#### PERFORMANCE

|      | Resolving<br>Power (M/∆M) | Limit of Detection,<br>Formic Acid (gas) | Relative<br>Sensitivity |
|------|---------------------------|------------------------------------------|-------------------------|
| CTOF | 900-1200                  | 4 pptv (Bertram, 2011)                   | 100%                    |
| HTOF | 4000-7500                 |                                          | 10-25%                  |

| Mass-to-charge range | m/Q 0-1200, positive or negative ion  |
|----------------------|---------------------------------------|
| Aerosol LOD          | 100 pg pure material (MOVI with HTOF) |
| Sample flow          | 2 L/min (gas phase) / 10 L/min (MOVI) |
| Data rates           | Up to 200 mass spectra/sec            |
| Data format          | HDF5                                  |

### COMPONENTS

- Ion-molecule reaction (IMR) chamber
  - Tunable pressure
  - Two ports for Po-210 ion sources (reagent ion generation)
- (Optional) Filter inlet for gases and aerosol (FIGAERO)
- (Optional) Atmospheric ion sampling inlet. Easily interchanged with IMR chamber
- Atmospheric pressure interface
  - 5-stage differential pressure vacuum system
  - Collisional declustering chamber (CDC)
  - RF and DC focusing optics
  - Adaptable for other high pressure ionization schemes
- Bipolar TOF mass spectrometer (CTOF or HTOF)
- Vacuum pumps and pressure gauges provided
- Data acquisition system
  - Windows PC with acquisition and control software
  - High speed analog-to-digital converter (ADC)
- · Igor-based data analysis software
  - Graphical data browser, calibration routines, high resolution peak fitting

### REFERENCES

(CI-TOFMS) Bertram, et al. A field-deployable chemical ionization time-of-flight mass spectrometer, Atmos. Meas. Tech., 4, 1471-1479. 2011.

(MOVI-CI) Yatavelli, et al. Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS). Aerosol Sci and Tech, 44(1), 61-74., 2010.

(Atmospheric lons) Junninen, et al. A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039-1053, 2010.