

Particle Image Velocimetry (PIV) -Fundamentals & Applications

Arun Raj Ethi Raj LaVision GmbH arun@lavision.com

16th July 2020

LaVision – La(ser) Vision Technology

www.lavision.co

Laser Imaging: Techniques & Information

LAVISION

Flow, Spray & Combustion Visualization on Laser Light Sheets

	Velocity	Concen total gas	tration species	Temperature	Size
PIV	~				
LIF			~	~	
Rayleigh		~		~	
Raman		~	~	~	
LII			~		
Shadow					~
IMI					~

PIV: Particle Image Velocimetry LI LIF: Laser Induced Fluorescence

LII: Laser Induced Incandescence IMI: Interferometric Mie Imaging

Optical flow diagnostics is the <u>art</u> of characterizing a flow in space and time by means of light scattering.

Why NON – Intrusive?

Usually, we need to bother about an intrusive probe if it is altering the flow, being measured/diagnosed

Why Optical ?

"Seeing is believing!!" Optical => light => photons

Usually, 'optical diagnostics' includes some *UV*, *Visible*, *IR*, and even other regions of the electromagnetic spectrum.

5

Why laser imaging?

Conventional methods (HWA, LDV)

- single-point measurement
- traversing of flow domain
 - time consuming
- only turbulence statistics

Laser Imaging technique: PIV

whole-field method

- non-intrusive (apart from tracer)
 - instantaneous flow field

QUALITATIVE DATA

QUANTITATIVE DATA

TRACER PARTICLES ARE FOLLOWING STREAMLINES OF THE FLOW

TRACER PARTICLES ARE DISTRIBUTED HOMOGENEOUSLY

Planar Imaging

Major components used in Planar imaging:

- Illumination source (Laser beam)
- Light sheet optics
- Flow seeding
- Camera
- Timing Circuit (Synchronizer)

PIV - Principle

PIV Design Rules

- Image density $N_1 > 10$
- In-plane motion $|\Delta x| < \frac{1}{4} D_1$
- Out-of-plane motion $|\Delta z| < \frac{1}{4} \Delta z_0$
- Particle image diameter $d_{\tau} / d_{r} = 2-4$

Adrian R; Westerweel J (2010) "Particle Image Velocimetry"

B0001-B0001 frame #1 R:512

- N_1 = particle per int. window D_1 = int. window size
- Δz_0 = light sheet thickness
- d_t = particle image diameter
- d_r = pixel size of CCD sensor

Examples of digital correlation

Particle Tracking Velocimetry (PTV)

single frame

Principle:

- particle detection and determination of its position
- tracking of single particles by particle matching

Remarks:

- Imited to low seeding density (<0.002 ppp)</p>
- 2D PTV suffers from low statistics, higher validation requires an extension to stereo / 3D / higher temporal sampling

double frame

DNS, ROI 256x256px, 0.002ppp DNS, ROI 256x256px, 0.05ppp

DNS = direct numerical simulation ROI = region of interest ppp = particle per pixel

Illumination Source

- LASER (Light Amplification by Stimulated Emission of Radiation)
 - Continuous Laser (low velocity appln)
 - Pulsed Laser
 - Single Cavity (low velocity appln)
 - Double Cavity (low to Supersonic flow appln)
 - Laser sheet used for Planar Imaging
 - Laser Volume

sed for Tomographic Imaging

- LED Light (low velocity appln)
 - Best suited for low velocity Tomographic application

4mm

Sheet
 ut minimum sheet thickness is abo

LED-Flashlight 300

Components of a laser

3. Coherence (same wavelength, same direction and the same phase)

Pulsed Laser

QSWITCH types

- Electro Opto Modulator (EOM)
- Acousto Opto Modulator (AOM)

Double pulse Nd: YAG Laser

A second harmonic ("2w") generator is a non-linear crystal used for doubling the frequency (or halving the wavelength)

- Typically needed for Nd:YAG lasers which operate at a fundamental frequency of 1064 nm (IR) to obtain visible green light at 532 nm
 Third harmonic ("3w") and fourth harmonic ("4w") also available
 - ▶ 3w (355 nm)
 - 4*w* (266 nm)

Light sheet optics

CCD sensor: Full frame Interline transfer

CCD parameters

CCD vs CMOS

CCD: moves charge from pixel to pixel and convert it to voltage at output node **CMOS**: converts charge to voltage inside one pixel

- CMOS cameras are much faster (parallel readout)
- CMOS cameras are less sensitive at 550nm (approx. factor 2)
- CMOS cameras show higher dark noise (factor 5-10)
- CMOS cameras don't show blooming effects
- CMOS sensors show inhomogeneous sensitivity (1.5% vs <0.5% for CCDs)

Seeding the flow

flow under investigation is usually transparent and clean \Rightarrow some additional particles must be added to gather stray-light

Problems:

- provide sufficient seeding in the field of view
 - slip of the particles (different density)
 - contamination of the test rig
 - particle size is important parameter

Inherent Assumptions

- tracer particles follow the fluid motion
- small to follow fluid motion
- should not alter fluid or flow properties (e.g. in two phase flows)
- density matched
- large enough to be visible

Mie scattering

- For Spherical particles with diameters larger than the wavelength of the incident light, MIE scattering theory can be applied (Rayleigh Scattering theory, d < wavelength)
- PIV is using MIE scattering
- highest intensity in forward direction
- ▶ 90° scattering with lower intensity

distribution for one particle

Particles

Туре	Material	Mean diameter [µm]	Flow
Liquid	DEHS Vegetable oil	0.5-1.5 0.5-1.5	air air
Solid	Glass spheres Polystyrene	10 10-100	water water
	Metal oxide	2-7	flame
Gaseous	Oxygen bubbles	50-1000	water

The specific weight of particles has to be selected properly according to observed flow medium.

Seeding Generator for air appln

Laskin nozzles

Olive oil

Fog Generator

Vaporizing fog generator

- very small particles
- high seeding density
- seeding density is difficul to control

Particles for seeding liquid flow

Polyamide Particles : almost perfectly

spherical particle shape

- Offered particle size 20, 60, 100 microns
- Particle density close to water density
- Bigger particle size and density close to water leads to a strong scatter of the laser light

Fluorescent particles

0.3 µm, Rhodamine 6G, Polystyrene, suspension, 15 ml				
0.5 µm, Rhodamine 6G, Polystyrene, suspension, 15 ml				
0.9 µm, Rhodamine 6G, Polystyrene, suspension, 15 ml				
2,0 µm, Rhodamine 6G, Polystyrene, suspension, 10 ml				
2.0 µm, Rhodamine B, Polystyrene, suspension, 10 ml				
10 µm Rhodamine B, Melamine, suspension, 10 ml				
20 - 50 µm, Rhodamine B, PMMA, powder, 1 g				
20 - 50 µm, Rhodamine B, PMMA, powder, 25 g				
20 - 50 µm, Rhodamine B, PMMA, powder, 50 g				
20 - 50 µm, Rhodamine B, PMMA, powder, 100 g				
1 - 20 µm, Rhodamine B, Polystyrene, powder,1 g				
1 - 20 µm, Rhodamine B, PMMA, powder, 1 g				

Particles for seeding combustion flow

- TiO₂ (keep dry, agglomeration!)
- Aerosil 2000 (SiO₂, very small density)

Large-scale Volumetric measurements with Helium-filled soap bubbles

Fluid Supply Unit

- Air seeding with µm-particles is not suitable for large scale PIV/PTV experiments due to their limited scattering power.
- Neutrally buoyant Helium-filled Soap Bubbles (HFSB) with a diameter of 0.3 mm and a response time less than 15 µs and scatter 10000x more light than µm-particles.
- HFSB-Generator can deliver at a production rate of 40000 bubbles per second and per nozzle

Volume: 800 x 800 x 1200 mm³, illuminated with LED spots

Particle tracks and vorticity contours calculated with Shake-the-Box (STB), courtesy D. Schanz, A. Schröder, F. Huhn DLR Göttingen

Aerodynamically optimized HFSB linear nozzle array

Particle Density

Calibration

1. Scaling

Requirements:

- camera viewing direction is perpendicular to light sheet
- no image distortion (curved window etc.)
- Inear camera lens (no fisheye, endoscope, etc.)

load/acquire an image that includes two positions with known separation
 specify these positions and their separation in mm

Nonlinear image correction

Reasons for image calibration:

- oblique viewing direction
- distortion by curved windows (cylinder rings etc.)
- distortion by special camera lenses (fish eye, endoscopes)

When using an angular separation stereo configuration its is necessary to establish a non linear mapping function between the measurement volume and position on the sensor.

Calibration: calibration plates

•

•

٠.,

e

flat calibration plate

two-level calibration plate

Calibration plates are available in different dimensions

3D Calibration procedure

	Input images
🖳 Calibration parameters	 20.0 1. Click 1st mark on top level. This has to be the same mark for all cameras in all views (defines origin) 2. Click 2nd mark directly to the right of 1st mark in case of front side. Click mark directly to the left in case of back side. (defines x-axis) 3. Click 3nd mark directly above the 1st mark on top level (defines y-axis)
Calibration plate:	15.0 -
Mark search:	12.5-
Plane spacing: 1.000 mm	
Z position of first view: 0.000 mm	
Image: Wight and State	0.0-
	-2.5-
	-12.5-
	-15.0 -
	-17.5 -
	-25.0 -
	-27.5 -
	-30.0 -
0%	-32.5- Type 11
Stop Accept Discard	-0.62

Calibration: result and evaluation

LAVISION

How to choose: polynomial vs. pinhole

Only perspective distortion (e.g. no diffraction in glass window/pipe) → pinhole model

- Benefit: physically meaningful parameters
- Calibration plate *does not need* to cover full camera image (extrapolates well)

Arbitrary distortions (windows, pipes) \rightarrow polynomial mapping

- Very poor extrapolation
- Calibration plate *must* cover full camera image

Synchronization

• fully synchronized recording with a precision better than 50 ps

Specifications

Sequencer output lines Inputs Output drivers Input load Output precision Processor Sequence RAM up to 24 independent trigger, start, phase, 4x TTL-in TTL 50 Ω TTL 50 Ω or "high-Z", software selectable typ. 50 ps dual-FPGA for firmware and sequencer 64 MByte

Advanced Techniques

- Stereo PIV
- Tomo PIV
- Time Resolved PIV (TRPIV)
- MicroPIV (2D/Stereo/Tomo)
- Thermographic PIV
- Fluid Structure Interaction (FSI)
- ► STB
- Underwater PIV
- Endoscopic PIV

PIV: Multi-Dimensional Flow Field Imaging

Stereo PIV: Possible Arrangements

Stereo PIV: Self Calibration (Patented)

Problem:

position of calibration plate \neq position of light sheet

calibration correction by particle images

Advantages:

- reduction of calibration errors
- calibration plate can be outside of measurement volume
- side benefit: position and thickness

of laser sheet is measured

Reference: Wieneke B (2005), "Stereo-PIV using self-calibration on particle images", Exp Fluids, Vol. 39, 267-

2D PIV: Hummingbird

Application

Flow around hummingbirds

Field of View 100 x 75 mm

Equipment Imager Intense Solo III lasers

Seeding Atomized olive oil

PIV Parameters Double frame/double exp. Mulitpass (64 x 64; 32 x 32) 50% overlap

LaVision Ref: SA 04/03

Stereo PIV on Surfaces: Surface Waves

Stereo PIV

- articles floating on surface
- white light illumination

3D surface shape and motion

water waves with obstacle

plane color = u-velocity component, vector color = w-velocity component vertical axis enlarged

True 3-Dimensional PIV= Tomo-PIV

Volume PIV (3D3C) : Tomographic-PIV

Tomo-PIV: 2 – 4 Cameras

βλ

Tomo-PIV: Locust Wake

Time-resolved Tomo-PIV measurements in the wake flow of a locust flying in a wind tunnel

courtesy: R. Bomphrey, Dept. of Zoology, University of Oxford

Tomo-PIV on cylinder wake

Experimental apparatus: wind tunnel. illumination. imaging

- low-speed wind tunnel: V_{∞} = 5 m/s
- circular cylinder: D = 8 mm (Re_D = 2800)
- camera: 4x 1376x1040 pixel, 12 bit
- laser: 400 mJ/pulse f# = 8-11

FOV: 40 x 40 x 8 mm = 730 x 731 x 184 voxel

Interrogation volumes: 41 x 41 x 21 voxel 75% overlap

Number of vectors: 64 x 64 x 30 = 122.000

Estimated accuracy: ~ 0.05 pixel

Time Resolved PIV

Note: "high speed" image recording means high frame rate **NOT** high velocity in flow field

Time Resolved PIV: Different Operating Modes

CRM: Constant Rate Mode **FSM:** Frame Straddling Mode

Microscopic PIV with fluorescent particles in volume illumination

Microscopic PIV = Micro-PIV = μ PIV

Standard PIV

Mie (or LIF)

light sheet $(\geq 100 \ \mu m)$

light sheet

thickness of

Illumination

volume Techniques

Line-of-Sight

Resolution

PIV with microscopic resolution for

- micro channel flow applications
- micro electromechanical systems
- bio-analytical devices

LIF

focal depth of

microscope lens

 $(\geq 2 \mu m)$

Examples of MicroPIV

on microchannel of 200 µm width

- 10x magnification
- seeded with 1 µm particles

- on microchannel of 30 µm width
- 40x magnification
- seeded with 1 µm particles

Stereo / Volumetric µ-PIV

Flow field around a moving 100 µm plankton recorded at 1 kHz frame rate using StereoMicroPIV

Motorized options for both Inverted Microscope and Stereo Microscope

Motorized Inverted Microscope

Motorized Stereo Microscope

Shake-The-Box (STB)

- Shake-the-Box is the most advanced 3D Lagrangian Particle Tracking Velocimetry (PTV) method for densely seeded flows at highest spatial resolution.
- Shake-the-Box is a purely particle-based technique using an Iterative Particle
 Reconstruction (IPR) technique in combination with an advanced 4D-PTV algorithm using the

- Sensor size: 4 x 896 x 656 px, 4 x 0.53 Mpx (full sensor: 2 Mpx each), 10 Bit
- FOV: f = 8mm, 23x16x15cm³
- **Repetition rate:** 500 Hz
- ✓ Working distance: 50 cm
- Illumination: White LED300

Endoscopic PIV

With endoscopic PIV, a costly manufacturing of prototypes with large windows for optical access can often be avoided. Instead, only 8 mm holes are needed for a PIV measurement of internal aerodynamic phenomena, reactive flow fields and combustion processes. Applications include:

- turbomachinery
- aircraft engines
- compressors
- pumps
- IC engines
- pharmaceutical and live science applications

Instantaneous in-cylinder tumble flow, courtesy: Volkswagen

Camera endoscope mounted to a FlowMaster series camera

Laser endoscope forming a light sheet from a high power pulsed laser

Thermographic PIV

- for simultaneous flow velocity and temperature measurements
- it works with phosphorescent PIV particles, which are suitable both for PIV and laser induced thermometry measurements with only slightly modified PIV systems.
- For PIV: use Mie UV Scattering and
- for Temperature: temperature sensitive emission after UV laser excitation which is used

Simultaneous high speed imaging of flow & gas temperature file of a BAM:Eu-particle seeded air flow

Fluid-Structure Interaction (FSI) is the interaction occurring between a moving and/or deformable structure, and an internal or external flow.

Setup: test wing above a rotating steel belt in a wind tunnel: LED and laser illumination from above, two PIV cameras recording from the side, two DIC cameras recording from the top, courtesy of R. Bleischwitz et al., Southampton University^[27]

Underwater PIV

- Underwater measurements in towing tanks, cavitation tunnels, or offshore facilities imply extraordinary challenges for the experimentalist and his equipment.
- The modular concept of LaVision's FlowMaster Underwater PIV systems allows a large variety of PIV imaging configurations for uncompromised performance. 2D-, Stereo- and Tomo-PIV measurements are realized using torpedo designs or compact vertical borescope setups.

Figure 7: STB particle tracks in the propeller wake in 15 consecutive time steps color coded by velocity magnitude.

Other Product range

Visit us <u>www.lavision.de</u> for more details

Thank you for your attention!

ARUN RAJ arun@lavision.com

VIVEK <u>vivek@tesscorn-aerofluid.com</u>